UNCLASSIFIED

AD NUMBER
AD412675
LIMITATION CHANGES
TO:
Approved for public release; distribution is
unlimted. Docunent partially illegible.
FROM:

and their contractors;
Adm ni strative/ Operational Use; 07 MAY 1962.
O her requests shall be referred to Ofice of

Naval Research, Arlington, VA 22203. Docunent
partially illegible.

Distribution authorized to U S. Gov't. agencies

AUTHORITY

ONR Itr dtd 4 May 1977

THISPAGE ISUNCLASSIFIED




UNCLASSIFIED

o 412675 |

DEFENSE DOCUMENTATION CENTER

FOR
SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

&

UNCLASSIFIED




DISCLAIMER NOTICE

THIS DOCUMENT IS THE BEST
QUALITY AVAILABLE.

COPY FURNISHED CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




NOTICE: When government or other drawings, speci-
fications or other data are used for any purpose
other than in connection with a definitely related
government procurement operation, the U. S,
Government thereby incurs no responsibility, nor any
obligation whatsoever; and the fact that the Govern-
ment may have formilated, furnished, or in any way
supplied the said drawings, specificatioms, or other
data is not to be regarded by implication or other-
vise as in any manner licensing the holder or any
other person or corporation, or conveying any rights
or permission to manufacture, use or sell any
patented invention that may in any way be related
thereto. i



2

l GENERAL APPLIED SCIENCE LABORATORIES, INC.

I NO. OTS ot SUTBLE 7O RELEASE TO 0TS



i
Copy No. _é_ of /P
Total Pages - iv and 124

Fa=H46- Y472 ¢T7

Reproduction of the Report, @_S_TEEELL OF THE

in whole or in part, is permitted ELECTROMAGNETIC

for any purpose of the United CHARACTERISTICS OF O—@U"}'
States Government, MOVING IONIZED GASES,

Gc, SHEONS
SEMI:\NNUA L TECHNICAL

O ‘O’V'q C‘ )z, SUI:/I_M—A\’IE\—{_I_RFJ_PC{T, neo &

e, TECHNICAL wl .AZ‘?O

@) e
/
@c ARPA Order s, 207461 ./,/A

ontract w, NoniC3475%00,Y

Pe¢riod; (OL,LM‘:). v ,@(‘\ f‘
‘R‘V‘W‘ e Title of Project @ /944/3 @A/4—

e s e w e
"Studies of the Electromagnetic Charat Teristics of \Iovmg Ionized Gdses" )

- s e

Preparecd for

Director
Advanced Research Projects Agency
Department of Defense

The Pentagon
Washington 45, D. C.

sxpk Conte 103 Ses

Prepared by

Generul Applied Science Laboratories, Inc.
Merrick and Stewart Avenues

Westbury, L. 1., New York "Q;'MP'

April 30, 1962 Approved by:
Antonio Ferri

NO Om President



CHAPTER

I

II

111

v

TABLE OF CONTENTS

SECTION AND TITLE

Status Summary of the Research

Electromagnetic Properties of Nonuniform Plasmas
from Microscopic Considerations

Introduction

[. Mathematical-Physical Characteristics of Model |

Appendix L. Derivation of Eqs. 1.8 and 1.9

Figures

2. Analytical Method for Solving Equations

Appendix 2. Eigenfunctions and Eigenvalues of the
Collision Operator J

Symbols

References

study of Electromagnetic Propertiecs of Nonuniform
Plasmas in Thermal Equilibrium, Isotropic Case

Introduction
{. . Irreversible Thermodynamic Description of the
Medium
Determination of the Coefficient a
3. Lixpressions of the Pertinent Phenomenological
Coctficients in Terms of Transport Coefficients
4. Dectermination of the Electric Conductivity of
a Plasma
2. I, The Transport Coctficients for a Plasma
Analysis of the Orders of Magnitude of the
Transport Coefficients
l. The Coefficient a
2. Value of a Obtained for the Ionosphere F Layer
3, The Electric Conductivity
Conclusions
Tables I, II and III
Symbols
References

(2%

.

The Experimental Investigation

Introduction

L. The Plasma Generator
.. FElectromagnetic Measurements

ii

PAGE

10
18
2]
24

26
21

28

28
32

40
45

49

512
61

65
67
68
70
72
74

© 7

79

79
80
86

3. Investigation of the Plasma Density Behind ArgonShock (0t

4. Future Work

110

Appendix A. Equilibrium Shock Calculationfor Pure Argon]ll



_CHAPTER

TABLE OF CONTENTS (CONT)

SECTION AND TITLE

Analysis of the Electromagnetic Field Within a
Circular Wave Guide Containing an Axially
Nonuniform Flasma

Introduction

l. Field Equations

Z, Expressions Relating Axial Variation of Field
to (Ejrz )Av and (H; Z’\V

3. Determination of the Square of the Local
Complex Refractive Index, w2

1. Plasma Frequency and Collision Frequency

PAGE

115

115
117
120



ey IS NI DN P R e e e I I MDEE MG MBS AR Y BB DS O

iv

STUDIES OF THE ELECTROMAGNETIC CHARACTERISTICS

OF MOVING IONIZED GASES

The Project Scicentist for this task is Dr. Manlio Abele.

The investigations of the microscopic and macroscopic
propertics in a weakly ionized gas reported in Chapters II and 111
of this summary rcport were carried out under the direction of
Professors Piero Caldirola and Luivi Napolitano, respectively,
and under the general direction of Prof. Picro Caldirola.

The experimental investigation described in Chapter IV has
been carried out by Messrs, R. Tomboulian, M. Wecker and
H. Medecki under the direct supervision of Dr. Abele.

In Chapter V, preliminary calculations have been conducted
by Dr. Brucc Gavril in the evaluation of the electromagnetic pro-
perties on the basis of the experimental information ohbtained with

the shock tube facility.



CHAPTER 1

STATUS SUMMARY OF THE RESEARCH

The present semi-ann:al progress report covers the theoretical and
experimental rescarch performed during the period from October 1, 1961
to April 1, 1962, in connection with the study of clectromagnetic properties

of yonuniform plasmas,

etailed calculations of the distribution function of the clectrons are

1
1

presented, with the basic assumption of a weakly ionized gas where only

clectron-nentral particle collisions are taken into account, | ohewimre—the

-
procedure described I Ghapiesd, hw caleulations will be extended to the

case of interactions between clectrons and ions,  The results obtained g

Ghrpter—H will be applied first to @ one-dimensional problem where a tempera-

ture gradient is assumed in the plasima, and the electron ditfusion and electric
propertics of the lonized gas will be computed,  Chapter ese

PO TEPNY | -J‘_rl-,k-..‘u N B EVPETR SN pveevapn

theor eticadrrrer UGLU])i( an;uybis rt—tHre Prerpes

efan appliedmapneric ot~ The clectric field, induced by nonhomogencous

thermodynamic propertics, and the electric conductivity of the plasma are
evaluated, The analysis is performed for the case of weakly ionized gas in
the imperfect Lorentz gas approximation,
: L . : .
This analysis ha extended to the case of a nomisotropic plasma.
which corresponds to an applicd magnretic tfield, The results obtained will be

presented in an additional report..

The experimental program has BIen conducted, with the technique

described in the previous progress report)\in a nonuniform argon plasma

obtained in the shock tube facility., Chapter IV presents the experimental



results of the electron density profile of the ionized argon behind the shock
for several initial conditions of the driven section. In the limited range of
frequencies which have been used in these experiments, the results show the
high resolving power of the technique. In the prelimiinary part discussed
herein, only the case of small absorption of the microwaves has been
analyzed.

In connection with the program of computing the electromagnetic propertics
of the plasma from experimental results, the analysis of the propagation of
electromagnetic waves in the nonuniform medium inside the cylindrical wave
guide is still in progress, The analysis is carried out assuming that the
complex dielectric constant of the medium is unknown. and the propagation
equations are solved in terms of measured quantities at the surface of the
wave guide, The measured quantities correspond to the signals obtained
with the electrie and magnetic probes which are located at the surface of the
wave guide. Chapter V presents the results obtained assnming that the
electromagnetic properties of the plasma are constant in a cross-section of
the tube and depend only upon the axial distance from the shock, These
results will be applied to the calculation of electromagnetic propertics on
the basis of the results described in Chapter [V, The analysis will be extended
to the case of monuniform transverse distribution, assuming a suitable model

for the radial dependence based on theoretical caleulations of the flow ficld

behind the shock,



CHAPTER II

ELECTROMAGNETIC PROPERTIES OF NONUNIFORM PLASMAS

FROM MICROSCOPIC CONSIDERATIONS

INT RODUCTION

The main object of our rescarch was to examine, in a microscopic way,

some effects in a plasma, due to inhomogencities, so as to estimate the
importance of such effects on the principal electromagnetic properties of
the plasma, as, for instance, conductivity., In order to reach such results
from our view puint, it is necessary to caliulate certain distribution functions,
directly deducible from Boltzmann's equations. If inhomogenceities are present
(due to gradients of concentration, of temperature, et . oas far as we know,
no i\_illliiil};:]f:‘t_‘l(_)gt'_(l method of calculation exists,

For this reason we decided to examine various models beginning with
the simplest ones;

1. Plasma assimnilated to a vgc.xkl) ia_n i '.c(l_ Lu:cnluhn}_;;g_.z, considering
clectrons and neutral molecules and ne tecting Coulomb interactions,

2. Three component plasma (electrons. ions, neutral molecules) taking
Coulomb interactions into account,

Since the analysis of model 2. has appearcd pdr!icul.n'lyl difficult from
a general point of view (for the reason that it implies the solution of a system
of Boltzmann's cquations), first of all we decided to carry out in a detailed
way, a method of actual calculation, in order to face the simplest model 1.
even if it is not very realistic, In addition, f{or the scheme }. we have decided

to examine separately the various inhomogenceity effects and also, to keep near



to the model studied from the macroscopic view point, we have selected the
; s

detailed examination of the influ¢nce of temperature gradient in a slab con-
taining the plasma, whose walls are absorbing and emitting with a Maxwellian
distribution,

First, in Section L., the complete mathematical-physical «.h.aractcristics
{in our opinion not so wholly developed in the literature) of model 1, are
described up to the deduction of final cquations.

Next, in Section 2., a known analytical method used for solving the equations
of Section I, (scries expansion of eigen functions of the collision operator) is

described.



—

. MATHEMATICAL-PHYSICAL CHARACTERISTICS OF MODEL |

We consider, as in the Lorentz gas model, 4 binary mixture of a sinele
5 8

kind of neutral molecules and electrons, That is to say, we consider a weakly

_i_on_ﬁ_'/L(l] gas (n << N) which allows us to neglect {within the limits of an initial
research whose aim is to test a methematical method for studying Boltzmann
cquation for a nonhomogencous system) the ion  effects, provided that their
density is of the order of n.

We shall indicate with f (i’ Ay t) and F (i’ l’,t) respectively the clectronic
and molecular (listr.ibution functions.

In the corresponding system of the two Boltzmann equations :

Df = Jcc(f) ol (f)

cnl

DF = J (1°) + .]mC(F‘)

nini

we can neglect T (f) and J B
ve negle ('u( ) anc m(‘( }
Assuming, then, the following systen for the temporal behavior of

f and I7,

Df = J (f) (1. 1)

cm

DI.‘ ([.) (102)

mm

i
(4

we may note that:

a)  From the Equation (1, 2) the temporal hehavior of the molecules is entirely
independent of the presence of c‘lcctrons, while the clectron gas depends upon
the presence of molecules, through the collision term Jcm'

b} The temporal behavior of the electron gas, given by Equation (1,1) is

affected by the molecular gas, as we shall see later, only through the



following phenomenological parameters:
molecular density, mecan velocity and mean square velocity,
As a result it is not necessary in solving Equation (1,1) to integrate the
Boltzmann Equation (1. 2):
RE = Jmm(F)

for we only need the knowledge of the above mentioned phenomenological
parameters, ‘

We shall begin by expanding the electronic distribution function

f(x, v,t) in spherical harmonics, writing:

(8 9] s
b i
f(x, v, 1 5, : X, V “
X, Vv, 1) LI Ccm S PR T R
“reo |
c=m e
where
= v©¢ 08 b
am =V cm(o) cos mo
S = v' 8 (9) sin mo
&1 em
Qe (9) being the associated Legendre functions:
309!
- (ny)
© (0)=sin @ P (cos @)
em ¢

We may write the expansion (1, 3) in the form

() = L = 0 W)
v

(1.3)

(1.4)

where f, represents the isotropic part of the distribution function f, f; 1is the

coefficient of the first anisotropy and /( is simply the remaining part of the

expansion,



Introducing (1.3) into the Boltzmann Equation (1. 1) we obtain a
hierarchy of equations, which i1s casily obtained provided that we know the
resul* of the application of the linear collision operator J over each term of
the expansion (1, 3).

To this end, we may note that the operator J, in an approximation for

; . m |
which one has simply == = 0 (perfect Lorentz gas), possesses the following

M

properties, for cach isotropic function a(v):

Jomfa) =0
cm(ac‘”“) S Ucaccxn (1.5)
J (aS )= -V aS
em em e cm
In the imperfect Lorentz gas sclhieme, we shall have:
m
I o ) = Oy | —‘\71')
= v t m
J('nl(accl’n) 1 -L(.“Ccnl |'l t OZ ( W | (l.(\)
} : m
> -V af —_
Jcm(ubcm) "uscm [l k10 ! M)‘
where we have used the Landau symbol Oy {x), meaning a quantity which is
simply of the order of x,
The quantity Ol ( n_1_) has been calculated by others (2) under the
M
hypothesis of a Maxwellian molecular distribution F, obtaining:
~m 12 5. KT 3a,|
Ll o L) ek

On the other hand, we have proceeded to the evaluation of the quantity Ol(m/M)
keeping an entirely arbitrary (and hence generally anisotropic) molecular

distribution,
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The results of our calcunlation is given by:
1 ) J VAR vy =
3L = T EAL) W B = N+ i) 2= VY (1. 8)
em vZ dv 1 v - A B
\'
where:
PE el
1 o 3 3 o— =
A(v) —MHVQ+UIV 3 el
B(v) = v, via
C i W, }‘U 2 a—a- 3V l_ v .!. aUZ 2 ]'
(v)_(l-2 Z)v i (1'2 Z)v-(‘ = vé |a (1.9)

We have followed Chapman and Cowling's notation, in writing

3

vov vVt (vv -4 we 6, 0 R
= AL 1 3 1 J
e
1y =1

while YV and V, are the first two rclaxation frequencies l.l]l

n
d - 1
Y(v) = 27Nv | sin @ |1 - P, (cos @) 0(0,v) d0
) L}
o
(1.10)
m :
r |
V(v) = 2TNv sin@|1-P (cos 0){ ¢(0,v) do
2 \ i 2 .
o

i

U(Ol v - ! l) being the differential cross scetion for clectron-molecule
collision, in a frame of reference fixed with one of the two particles, The
determination of Jmn(nccm), Jem(uSL_m) has been done disregarding the
Oz’ O3 terms,

A general account of the method followed in the derivation of formula

(1.8) is given in Appendix 1.



Taking into accout that f is an isotropic function and f ,° Y sm
o fin
v

simply a linear combination with isotropic coefficients of C 4, Cy» Sll g

v
(= «f,)

we are now able to calculate J
em ' v

e

eln

If we perform a further approximation(¥) forgetting the term X(v)

in (1.4), we at last arrive at the followiny:

¥ 5 §
L P, vy, Jv 3% L
B Tpalli= 0 5 IA(v) ARt Y e S Nig
5 J (r.1h)
_vl :_- _f_J
v

where A(v), B(v) and C(v) are given by (1.9).
The calculation of Df is immediate. Finally, by means of the
orthogonality properties of the spherical harmonics functions on the unit

sphere, we obtain the following systen:

of v f 4] 9 1 3
2P == £+ — (vih.f1) = 2 = v v
St 3 - = 3w v —= M e LTS
' MV_ efy ll 12)
JIE
3myv v '(
o,
== 2 of ==
i vgf,t — 29 E b HXE) = ae 2 (vr i) Voo v |
- e TRy — 2 WC = vi 3w o' — o
At )

in the unknown functions f , fl 3
o

(*) As usual in this kind of reasoning, we may evaluate "a posteriori' the
usefulness of this approximation, by calculating explicitly the difference
between the results obtained and those based on the successive approxi-
mation, or "a priori'' we may introduce some plausible arguments, like
those used by Davydov (3 ) and Gurevitch ( 4).
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APPENDIX | - DERIVATION OF EQUATIONS 1.8 AND 1.9

Let us state here some formulas which we shall use later on,

directly deducible from the dynamics of elastic {ctassical) collision between

two particles (in our case, electron and molecule},

Let us consider an elastic electron-molecnle encounter, with
velocity v, l’ respectively, well before the collision,

Let us put:

g-_\’_\v

where g is the relative velocity of approach of the molecule in a frame of
reference fixed with the electron (see Figures 1 and 2 at the end of this
Appendix).
0 is the scattering angle; from Figure 2 we have at once:
.
g -g'=2¢sin= k=2(g- k)k
BT R 2 = 8 X
where k (apse line unit vector) represents the direction of the external
bisectrix of the angle between the asymptotes of the relative motlecnlar
trajectory,
We have thus:
’ . -
Vavaz Vievt s 2g sin — k

from which, by momentuin-conservation:

m

'I_,:_——— .l_.
= 4 ol LA
' s e |
vieys g !
£ WA & == |
|
W o s e Rk
=l L R =

(Al-1)
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having stated A = ="
M

In the frame of reference sketched in Figure 3, we see that the

components of k are

k'=-cosg cos ©
X 2
k|=-cos—sino
y 2
k"—'sing
L 2

We pass from this frame to the one Skct(‘l;l‘(l in Figure 4 through:
X=-x"sinp+y' sin€cos P+ ' cos € cosp
y=x'cos P+ y'sin€singt 2 cos € sin
2= y'cos € - 2'sin €

where (sce Figure 4):

d v V
sSin € = — -« — €05 a
’_l‘ ¥
\I
cos €= T sina
14

S0 we can calculate the components of k in the frame of reference of

Figure 4. Using the first of (Al-1) we have the followinyg:

vl (1 + A) = = [(v = V cos a) sin @ sin 0 - v {l=-cos @) sin n-\cos p
X

g sin @ sin f cos ©

- -

|
v;,( 1+A) = = {{v - V cos a) sin @ sin © - V (l- cos @) sin a |sin

(Al-2)
- g sin Q@ cos B cos ©

‘ =
v (I+tAY = v (At co3 Q) t V | (l-cos 0) cos a - sin @ sin a sin ©
Z
1 l.’ __)
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So, squaring and summing:
Gl e Jl +2A cos @+ A%+ 2B% (l-cos Q)
1+ A L (A1-3)
. , 1/2
+ 2B [(A-l)cos a(l - cos Q) - (Atl) sin a sin @ sin © .
where we have put:
\Y
B &, 5
v
We now treat A and B as infinitesimal quantities and eliminate
quantitics which contain AL A%.... B 3, Bt Tenste iy TASBS iinis
(A1-3) becomes :
w! o= v 11A cos @ - A+ B2 (l-cos ©) - B l'cos a (l-cos Q)
{ - {(Al-1)
- . : gl
+ sin @ sin a sin VO |- —l—- cos a (l-cos @) ¢ sin a sin @ sin © S
1
To the same order: J
viav=v (B2 A)(lecos 0) - B cos a (i-cos0)
‘ “ (Al1-5)
L op? | 2
bosin a sin @ sin Ql- — | cos a(l-cos0) + sin a sin @ sin C"i ¢
! 2
J f A
= <2
(v'=v)? = \'ZBZLC()S a (l-cos @) t sin a sin @ sin © ! (A1-6)
‘ T2 132 '
g o= v‘l B2 - 2B cos a } =let——- sin’n - B cosal (A1-7)
= B 2 :
B2 30 B2 #o
0(0,g) =0(Q,v) t v L sinla- Bcosu‘-g-v e vicosla Fywea (A1-8)
0 (0,g) g =0(0,v) v-Beosa (v %‘.’. 1 0)+ O (BY (A1-9)
v
We must now simply evaluate the behavior of the operator J,  , over an
arbitrary isotropic function a(v), that is the quantity:
Jemf(a) = S(Q‘F' -a F) go(e,g) dQdv (A1-10)



f (v); according to a general well known rule:

The preceeding collision term has been evaluated by noting that in each

electron=molecule collision, the variation of the modulus v of the clectron
]

velocity is given by: 3
m | 12

v -vzq = (Al-11)

[
1

(see (Al-53))

As a conscquence, the integral operator J can be put in a

em
differential form, following the same technique used in the transformation of
the Boltzmann elastic collision operator into the Fokker-Planck form
(references (5) (6))

Let us introduce a suitable, but largely arbitrary isotropic function

()

4 rl -—

J (ﬂ)'f'(\) dv = ({‘_7(\") -d(v) ! g a(v) FAO,p) dQdV dv (A1-12)
| Tem = ! A

Furthermore, retaining only terms of the order of m/M, we have according

to (Al-11):

4 . =2
Z(v') - g(v) (v'-\)a_f_ v L ovraey? 2 / (Al-13)
Av 2 aye

Inserting (Al-13) into (Al-12) and integrating by parts, we {ind:

-

= ) _:_3_' 2 . l ] 2\ )
Jcm la) = 3F 3% T e ¥ 2 ;(" A(v) alv) (Al-14)

where
p(v) = (0(0.;:) gF (v'-v) dQaV

(Al-15)
Mv) = 0(0.8) g F (v'-v)? dQaV

(*} Sece, for instance references (2),(7).
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So far as we choose ¢ (v) to satisfy the following relations:

Y i g T i o)
l}MvZJ = {fx C’a—f \.i| = :—v (vzax)ﬁ] =0
=

V=0 V=0 V=0

In a way consistent with the approximations used, the two preceding
functions (v} and A(v) have to be evaluated to the first order in the quantity
m/M.

To the first order, 0(@,g)g(v'-v) is given by formulae (Al-5) and
(A1-9) as follows:

Og(v'-v) = 0(0,v) v2BZ (l-cos 0) - 0(0, v) vZA (l-cos 0)

2
-0vZiB cosa (lecos @) - Ov? BZ_ cos?a (1-cos 0)2

B2 50
- Oy? Z_ 5in%0 sina sin% + B2 cosla v2 (v ?—— + ) (l-cos Q)
ov

where quantities containing sin © have been overlooked, because a successive
integration is performed over O, from o to 27, From the definition (Al1-15) of
K (v) we can obtain it from the preceding relation, by integration over @ and ©

and over all the velocity space V.,

Leaving aside the (direct) integration, we have:

Vi 72 T 11 Vi e & vz 8, w2
A A AT aVEe 2o vzl v (A1-16)
& 2 v 2 ‘iJ v N

where
m
Vl = 2T Nv \ sin @ (l-cos @) 0 (@, v) do
o
4

\

2T Nv sin @ (l-cos O)ZwU (@, v) do

Y
]
QA O

b = 20Nv \ 5in® 0 0 (0, v) d@

c —



and having stated:

1
=v g(l\i V cosaF

.
Vil de V2 cos?a F
i N) -
- 1
V2 = = \dV V% sin%a sino F

15

In the same way, to the first order in m/M, 0(@,g)g (v - v)* following

formulac (Al-6) (A1-9) is given by:

o(Q-u) g(\"-\)Z; Ov VicosZa (l-cos 9)2 + ov V? sin? @ sin%a sin%

overlooking quantitics containing sin ¢,

Following the definition {(A1-15) we have thercfore:

b
A P vh 2, - r2
X{v) = & v” A

Let us now introduce the quantity:
7!’ 3 1
v = 2fNv |\ sin@ |1 - (- cos 20 - =)0 {0,v)do
2 J | 2 2

0 L |

{A1-18) can be written:

= 1
—~ ] e | g re
A (V) (zul-bz)\“, —3 uz\/ ,

with

Vot {TZ—:VE
4

Introducing now (A1-16) and (A1-20) into (Al-14), and leaving astde the

direct calculations, we have:

T j o —
T 1 v 1 v
Jc (a) Y t\ (v) + BY{v) vy +C {(v) I |

(Al-18)

{(Al-19)

(A1-20)
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where:
- m 1 — dv? 1 Rlay | ==
A(v):-—ulv3q+v(_l/-V)Vzu+—'vz—a—,vzu+—\ZV_VZ
M - o a \ 6 2 dv
S B (v) = v, via
1 v, 3
cv) = -v by cvpa.= v 2 a-vigy, - V) —
2 2 Sy Z v
u
Furthermore, by noting that:
a4 v .
Ww==—"x
&
o | —
vi= — vv:VYV
] o = LS
and puting:
2 1
W V V e T \lzb
we have at last: =
| )
l a v — vy — |
T, () = =52 JA(v) s B(v) —  V iClv)==—: V V7~ (A1-21)
i v aV v == vz ==
where '
m v oa i
A(v)=s — 1 \"niVlv)—‘-— [
i ! 3 a\
B(v) = ¥, via k (A1-22)
‘ |
da 1 v
C(v) (V-}-V)vlg‘43(v-—lfz)v--l-dz vi| a
1 2 2 v L ! 7 6 =
v 4 J
that is formulae (1.8), (1.9) of Section 1,
(A1-22) can be put in the form:
=]
L Lo ovy oo
e = =t @ [P EL: (A1-23)
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At this point, we are able to calculate the quantity:
Jem (0

where f is the electronic distribution function:

fafolv)t X "6 (v)

v —

Taking account that J, - is a linear operator, we have:

Jotf) = 3 {ig) = v,

ci en

.f’

<||<

by using the Bayet-Delcroix-Denisse approximation (see Reference (1))

One can evaluate Jcm“,) from (Al-23) by simply substituting a with f and
[§ (o]

arrive at the formula (1.11) of Section 1,
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ersection

7 = plane through the origin, perpendicular to the incoming molecule

7 '= half-planc terminated by the straight line a, over W
molecule.

r "= refercnce half-plane

b = inpact paramcters

o= azimuthal angle

0 = scattering angle

g' = relative molecular velocity after encounter

hich moves the incoming
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| =

19

FIGURE 2 (This Figure is intended to be traced on the
7' half-plane of the preceding Figure 1; kis
the unit vector of the so called ""apse' line.)

FIGURE 3



FIGURE 4
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=

/_ section with (x y) plane
\ El‘

(This part of Figure 4 is traced in (x'y') plane)
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2. ANALYTICAL METHOD FOR SOLVING EQUATIONS

We now approach the study of the system (1.12) limiting ouselves to
the stationary state when there is no magnetic field,
It is thus possible to express fl (x,v) as a function of f (x, v) and to
= o -

reduce the system to only one differential equation in fo (x, V)

: " v e S b B = = il
19 v REYgm M LT
v
| ) J (2.1)
e 9 5 m 1l 3 § MVZ 3f,
=4 5 - = — ly, v } = =
Imv? v (V2 E - &) P 7 me (o 3my bv)—i

Then we studied this elliptic partial differential equation in the variables

x and V.

As we said before, the presence of the molecnlar gas appears only

through the mean molecular velocity V ,V? and the molccnlar concentration N,
We developed f (x,v) in a scrics expansion of cigenfunctions of the
m 1 __? 5 MVZ 3 x
|V, v

operator J = {1 2 3v i v . In doing so 1t was

v/
necessary to specify the type of clectron=moleenle interaction we were

considering.
We have considercd two cases corresponding to central interaction of
the Maxwellian type and the rigid spheres type (see Appendix 2).

In the first case the eigenfunctions of J are:
» f

] mv? (12} v L - (12) L
e 2Z%kT L kT e L, 9 (2.2)
: | J
2
(where € = r;—I:—/— is the non-dimensional electron kinetic energy); in the

second case they are:
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N
[ o | |
& I[ . oS L‘”(;){K (2.3)

< ZkT 1_‘(l) (mv )

|e

Thus we have:

a) For Maxwellian interaction:
@ : . (1/2)
£ = P ap(x)e Lo (6 (2.4)
n=0"

b) For rigid spheres interaction:

P S " (1)
f. e a (x) e L (€) (2.5)

O 3 n - n

‘=0
(k)

Using the orthogonality properties of the L polynomials, we arrive at
two systems of infinite differential equations in ap(x) and ap(x) which, if
the electric field is neglected and V - 0, takes the form:

case of elastic - spheres interactions: (2,6)

Llag ) v tne ) Blageh v (ne 2 e 3T (agx)) -

- nﬁ(n“_l (_)i) ) - 2n (n ! &)C((lr_}(i) )+ n(n-l)t(qn Z(\) ) =

= 3y N? Z'_\:I‘ nnn(i)
<) ]

(n=20,1.,2,..)
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Case of Maxwellian interaction: (2
i

a 5 .
J.- n(n-1) (n-Z)C (an_3(§_) ) + n(n-l)ﬁ(an_z(i) + n(n-1) (41\{-2- )t (an-Z(i) V=

, :
-l) :

i 3 9
--Lni(an_l) 4 n(3n¥2),3(nn_l) t n(n + —2-)(6n & C (an

4 ! (2n + % )I(an) + (n 4 %) (3n ¢ ;)b (an) t (nt .;_) (n t -25-) (4n+-2-) f(nn) ' =

3

[
| 3 3 5., 3 5 7
=1 (n+ —)i(aml) t (n 4 "Z) (n ¢+ E)d(aml) t (nt E) (n %+ =) (a4 ;)f(am 1)‘lf=

| 2 ') )
3miv? N?
= (0] nﬂn(_\'_) (n=0,l,2,..-)
MKT
where : .
{ =y -ViegN:* ¥
< B = 2Vlog T* ¢ +9%log T - (glog T)? - ¢ log N* ¢ log T

C = (Vlog 1)?
In the Maxwellian interaction case we have also evaluated the contri-

~ bution due, separately, to the presence of both an electric ficld and of a mean

molecular velocity,



APPENDIX 2 - EIGENFUNCTIONS AND EIGENVALUES OF THE

COLLISION OPERATOR J

a) Maxwellian interaction (%)

2
6mvo (1/2_2

JM(O) 7 de

M

>
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do |
(©+ =—)
C

We consider the following eigenvalue problen::

Igyled=- Ao
or
d2o

2¢ (2€ + 3) i
dfo | .5
de? de

Introducing the new function

+€
()= e o (€)

(A2-3) becomes:

A2 d!
— i ( i L () —
de 2 de

Imposing on v (€}, as boundary conditions in €=sp

b(3|»

3Imv 2
o

AMA

6mvu 2
o

MA

ace, analyticity in € 0

(A2-1)

(A2-2)

(A2-3)

(A2-4)

and polynomial behavior for € »m, the solutions of (A2-1) are the Laguerre's

generalized polynomials of order 1/2:

\ 14

S (=1)
T=o

(1/2) | _
Lo (o) =

nt1/2 .

n=V 1%

€

(*) The maxwellhian cloctron-molecule interaction model corresponds to a

repulsive force varying as the inverse fifth power of their distance apart,

In this case the collision frequency does not depend on the clectron

velocity: V = Y N,
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]
corresponding to the eigenvalues
6bmy 2
)\n = o n {n=0,1,2...) (A2-5)
M
b) Rigid sphere interaction (¥)
; =
bmv <1 d | ‘ de 6
0 = == 1 S
JR(O) € Te l((O& i ) {(A2-0)
M =+
We consider the following eigenvalue problem
J (©)=-20
R
or
p MA
¢t ey 2 gas g V=0 (A2-8)
d("' de )lnl/0
Introducing the new function
€
F(e) = e Of€)
(A2-8) becomes:
d?y d
€ — + (2-€) — 4 MA ¢ = 0 (A2-9)
ae de Gml/é

Imposing on ! (¢) the same boundary conditions in €-space as in the Maxwellian
case, the solutions of (A2-9) are the Laguerre's generalized polynomials of

=
order 1, '-L( )(() corresponding to the eigenvalues
n

= —

by ®
Y = o]

n

n (n=0,% 250.) (A2-10)

M

() In this modecl we suppose electrons and molecules are rigid spheres. In
this case the collision frequency depends linearly on the electron velocity
V= VON Vo
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SYMBOLS
c light velocity in vacuum
k Boltzmann constant
m clectron mass
e electron charge
T electron (classical) radius
n electron density
v electron velocity (modulus v)
M molecular mass
R molecular radius
\L molecular velocity (modulus Y)
N molecular concentration
T molecular Temperature
\Z mean molecular velocity
v? mean square mmolecular velocity
E electric field
H magnetic {icld
D differential Boltzimann operator
— L n § s
= 5 'Ll =t
J integral Boltzmann operator

V= VONv = 7(R+r)? Nv collision frequency for rigid spheres interactions

Vrru‘o N =collision frequency for Maxwellian interaction

.47
dx

Al knudsen number

constant temperature gradient,
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CHAPTER 11

STUDY OF PII.E_(ZFI(OMAGNI'I'FIC PROPERTIS OF NONUNIFORM

PLASMAS IN THERMAL EQUILIBRIUM, ISOTROPIC CASE

INT RODUCTION

In this chapter results of the study of the clectromaunctic properties of
a nonuniform, macroscopically neutral plasima arce reported,

The line of approach is a macroscopic one, based on the thiermodynamics
ol irreversible provessces,

A three fluid model is assumed; the plasma is considered to be at rest
in a suitable reference frame, the components are in mutual thermal equilib-
rium and imposed magnetic fields are absent. The nonuniformities are those
connected with the presence of gradients of state parameters such as tempera-
ture, density und concentrations,

The presence of these gradients induces an ele tric field (i.e.f.) in the
medium, even in the absence of external clectric fietds, 1t will be shown that,
in the stationary state and in condition- of macroscopic neutrality, the induced
e. f. depends only on one independent gradient wiich, for conver ience, is taken
to be that of temperature. An expression for the ivedf. is derived, which is
valid for a most general medium and which is luter simplified to the case of
an imperfect Lorentz gas (i.e., weakly jonized plasma for which the mass ratio
between the negative charge and neutral moleoules is much smaller than one).

The electrical conductivity 0 defincd as the ratio between the electric

current I and the clectric potential gradient in a first-order stationary state
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in which a given nonuniform distribution of ¥ ¢ is maintained on the boundaries
of a system is also determined.

The phenomenotogical coefficients are first expressed in terms of thermo-
dynamic properties of the plasma, Tt is shown how these coeflicients can be
expressed in terms of only simple binary molecular diffusion coefticients and
thermal diffusion coefticients pertinent to the plasma coastituents.

This last step makes it possible, by utilizing the available experimental
‘m(}/or theoretical data on electron-ion, clectron-molecule, and ion-molecule
collisions, to express the phenomenological coetficients in terms of the local
thermodynamic state of the medium.

These results provide the necessary preliminary inflormation nceded to
proceed to the actual solutions of fluid dynami .nd/or electromagnetic phenomena
in a nonuniform plasma. In addition, they already lend themselves to interesting
order of magnitude analysis on the c¢ffcects induced by the nonuniformities, They
can be used, for instance, to define ranges wit in which these inhomogeneties
can be neglected and the medium treated as homogeneous, and to lend theore-
tical substantiation to experimental findings. During the last two years, for
instance, some experiments were made by S, Kl in at Saclay (France) on the
direct conversion of thermal energy into clectrical enerey (Reference 1),

The experiments were performed with a glass ball in which two muuetallic
clectrodes were immersed in an ionized mercury gas at rest, The clectrodes
were kept at two different temperatures and the ionization was obtained through
an H.F. source. As a consequence of the temperature gradient an induced

clectric field was detected and measured as a pot ential drop between the two
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electrodes. It was possible to observe that the i, ¢, f. increased with the
temperature difference and the degree of jonization. These results qualita-
tively agree with the theoretical conclusions which are arrived ut in the present
report.,

The steps of the analysis herein reported are as follows: In Section 1.,

Part L., the irreversible thermodynamic description of tise system is performed.
The extensive and intensive state parameters and the pertinent mass and energy
fluxes for a mixture of three fluids, one with negative and one with positive charges,
are defined. The dynamic relations between (luxes and generalized forces are
established and, through suitable use of the basic theorems of the thermodynamics
of irreversible processes, the general expression for the mass fluxes in terms

o! clectron concentration, temperature, and electric potential gradients is

arrived at,

In Section 1., Parts 2. and 4., the general expressions for the i, e.{, and
the electrical conductivity are obtained,

In Section L., Part 3., the problem of relating these phenomenological
coefficients to binary transport coetficients is considered. By suituble trans-
formation of fluxes and affinities it is shown how they can be expressed in terms
of three binary diffusion coefficients Dy,, D,y, Dy, and two thermal diffusion
cocfficients })r,r, l)}‘ , which refer to the plasnmia constituents.

In Section &, Part L., the evaluation of the molecular and thermal diffusion
coefficients for a plasma is carried out and in Part 2. an analysis of the order
of magnitude for the transport cocfficients is performed for the case of a weakly

ionized imperfect Lorentz's gas,
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Section 3. deals with an actual determination of the order of magnitude
of the phenomenological coefficients, with discussions of their properties and

with their actual evaluation for indicative cases.
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SECTION 1

l.1. IRREVERSIBLE THERMODYNAMIC DESCRIPTION OF THE MEDIUM

We consider a plasma formed by electrons (subscript 1) ions (2)and neutral
molecules (3) in mutual thermal equilibrium (i.e., T, =T, =T,;=T). Itis
further assumed that the plasma is at rest in a suitable reference frame and
that no imposed magnetic field is present.

It is of basic immportance, for a clear nnderstanding of the physics of the
phenomena being studied, to proceed to a rigorous irreversible thermodynamic
description of the system. This procedure will also help, on one hand, to point
out the number and types of simplifying assnmptions which will be made and,
on the other hand, to have a clear overall picture of the kind of results that
can be obtained with this approach,

The fundamental extensive thermodynamics variables X for the subject
system are: the internal energy U, the volume V, the masses M, M, , and M,
of the three species and the total electric positive and negative charges E; and
E, present in the volumme V. The fundamental relation S =S (Xk) (see Reference

23) can then be written as:

3 2

TS =U + pV == & Mi - il 315, (n
i=l i=l
where S is the total entropy; T the temperature, p the pressure of the misture,
The quantities g; and {; are, respectively, energies per unit mass and energies
per unit electric charge and arve thermodynamically defined in terms of the

partial derivatives of S with respect to the corresponding extensive variable.
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We make the following fundamental hypotheses:

Ei = Ci h’{i

g; (X)) = pi (G V, M)

H
<

£ (X))

That is:

The total electric charges are proportional to the total masses M, and M, .
This implies, among other things, that there is only one type of negative and
positive charge carrier,

The quantities g; coincide with the chemical potential pi pertinent to the
mixture considered in the absence of clectric charges (e =0).

'l'l‘w quantities f; are independent of the extensive variables Xy and thus
coincide with the electric potential ¢ .

It can be shown that these two latter hypotheses are equivalent to the
hypotnesis of separability of the eneruy* U, in the seuse that the total energy

of the system is simply the sum of the "mechanical enerey' of the noncharged

1

system for given 5, 'V, Mi (ci =0) plus the "clectrical energy' (e M) +e; My)o,
This hypothesis is certainly valid in the subject case (cfr. Reference 19).

Equation (1) can then be written as:

3
..U p T
5__..+.___v-S 1 : 2
T T L M (2)

i=1
whcrc—lf.i is the clectromechanical potential defined as;
By =Ry it ey & (3)

and, obviously, Ty =p,.

* A rigorous statement would involve the concept of free energies (cfr.Ref. 19),
It can be shown, however, that if the "{ree energy!" is separable, so is the

internal cnergy.
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IfJ, and J, (i £1, 2, 3) arec the energy and mass fluxes, respectively,
using the basic assumption of the thermodynamics of irreversible processes

one writes:
] 1., . % (l) L Ill\ v mn T
J, =L RO E I =LA o -t sa Vif=lEd
1 10 T 11 (T) 12 ( '1'>+ Ly ( T) (4)

The last relation follows from the mass conservation, The quantities Lij
are the phenomenological (or kinetic) cocfficients whicl,in the subject case of
absence of imposed maygnetic field, are scalar quantities. The Onsager's re-
ciprocity relation l‘i) £ LJiholds. The gradients of the intensive variables
appearing in equations (4) are the generalized forces, or affinities.

Different alternative forms, each suitable for a number of specific uses,
can be given to the system (4) by performing suitable linear transformations
of the affinities and /or the fluxes. according to a well defined set of rules,

It ‘A‘i indicates the direct affinity for the flux J; and if a prime indicates the
transformed quantities, then the following relations hold: {Ref. 23)

e

it > ﬂ;'ka (5)

1 i 1 2 ST -1 -1
Lim = %(— ﬁik Likﬂr‘nj

=l q : ;
where ﬁik is the reciprocal of the element By N the square matrix

Bikl

which defines the linear transformation of the affinities.
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We shall make use of few such transformations during the development
of the analysis. A particular transformation is however very instructive

for an introductive survey of'the nature and types of results which we

will get, |

We notice first of all, that the local thermodynamic state of the

mixture, in the subject case of thermal equilibrium among the con-
stituents, is characterized, as follows from eq. (2) when accounting |
for the presence of the electric potential ¢, by five independent variables.
Going from one sct of variables to another is accomplished through the
"state equations'’ of the mixture, It proves convenient to assume the
following set of parameters ¢ T, p. ¢, (i=1, 2), where the ci' s are
the mass concentrations of the charged components, as the basic set of
independent thermodynamic variables.,

The gradients of these variables are not all independent since there
arce a number of conservation equations to be satistied and there is, in
addition, the requirement of macroscopic neutrality, The latter amounts
to the relation

Voo 4 e, Vo

2V o = 0 ()
between the two concentration gradients, while the momentum conservation
requires, under the subject assumptions of macroscopic neutrality and
absence of mass motion, that the gradient of p vanish identically throughout
the field.

One is thus left with only three independent grédi('nts: say VT, Vé

and V¢, .
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It is most profitable and instructive to assume as new generalized forces
these three independent gradients and express, accordingly, the dynamic
equations (eqs.4) in terms of these forces, This can be done by expressing,
through the pertinent state equations, the gradients appearing in eqs. (4) as
linear combinations of VT.9$ ,Vc, and then applying eqs. (5).

As a result, the dynamical equations will read:

0V t e t E t
JO = LOOV it I.Aol th + l‘()l V¢

e Lo¥WT + iy Yo + L), e (7)
! [} ’ 1 [}
J, = L,o VT + L,y Vo + L,; Vo
Ag=VT
N v/
"\l - <y (8)
Ay = Vo
and the new fluxes Ji' will be given by:
J‘
L 7117' [Jq - {51y sy 0, 408y J‘)J B __:[_5_
Pleozaan - diatw
Jn' r I‘ "( }11 H;__ 241 M1 }l_‘___ g
rI |L -d(‘l ez ()(z
(9)

Jl

4

- [3&*___»1 e olps )

d e, 0C,

[(‘ljl -1 &) Jz] = -7}‘—

1
-

i
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where si's are the specific entropies of the constituents, and Jg is the total

entropy flux:

Ju ) B By
L g0 v 30

The quantity J:) can be thought of as the '"conduction" flux of entropy,

Jg = (10)

The flux TJ; has the clear physical meaning of the electric current, No
direct physical interpretation can be given to the flux Jl' which is a partic-
ular linear combination of the mass fluxes J; and J; . The thermodynamic
derivate appearing in eq, (9) are computed holding T and p constant,

The L:J 's are the new phenomenological coefficients in the present
context; there is no need for expressing l‘i'j in terms of the original
ones Lij d

The system of eqs, (9). containing the three truly independent gradients
vé, VT, Vc;, is in the appropriate form for the proper application of the
thecorems of the thermodynamics of irreversible processes,

Suppose we maintain, from outside , & constant temperature gradient
on the boundaries of the systemn,

Eventually a steady state will be reached, referred to as a stationary
states of first order, in which the direct flux Jz) is the only flux different
from zero. System (9) will then contain only four '"unknowns' (the
aforementioned gradients plus J(') ) so that three of them can be expressed
as function of the gradient of temperature, One thus obtains relations of
the type:

V¢ = (1(5) VT
Ve = w(s) VT (11)
IS

I USSR (- P v
0% -5

(4
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where the symbol (5 ) stands for "function of the local thermodynamic state
of the fluid",

The first relation gives the electric field dnduced by the non-uniformity
(under the restraint of constant gradient on the boundary). The pliecnomeno
logical coefficient a(s) is thus one of the required electromagnetic prop-
erties'" of the medium. The sccond relation gives the gradient of concentra-

tion induced by the temperature gradient in the presence of the induced

electric field, The last equation relates the temperature gradient to the
energy flux into the system (notice that J; = 1} = 0 implics absence of any
mass {lux throughout the system). When computed at the boundaries, it can
be interpreted, in the light of an overall energy balance, as the energy to be
supplied from the "ambient’ to mantain the induced electrie field (or, what
amounts to the same, the induced concentration gradients).

Equations (9), as they stand, can be used for order of magntitude
analyses of the effects of the non-uniformity herein considered, their degree
of accuracy depending, apart from the approximations involved in expliciting
the phenomenological coetficients. on the overall dimensions of the system.

Obviously, the thermodynamic state of the medium will be a function of the

point so that, for instance, the first of eqs. (11) should be written as;

vé(r) = a [s(r)] v T(r) (12)

where r is a space coordinate. Thus the ncomplete' solution of the problem
calls for the determination of the state parameters throughout the medium

(in order to answer, for instance , the question of what is the value of VT
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throughout the system when a given non-uniform temperature distribution is
maintained on its boundaries). This is, obviously, a much more complex
matter which must be handled by solving the energy and mass equations
VeJss ¥+J; = 0 subject to suitable conditions on the boundaries of the
medium,

However, order of magnitude analyses can always be carried out by

1

taking suitable "average' values of the state parameters.
Since, in this case J; £J] =0 implics also Jy 23, =0,this type of
information can also be obtained directly from the system ( 4) by setting in
it Jy=J, = 0, This simpler procedure will indeed be followed in the next part.
Consider now the other case in which a given non-uniform distribution of
electric potential @ is maintained on the boundaries, As before, the principle
of stationary states implies that the only flux different from zero is the
direct flux Jz' that is the clectrical current 1. Notice that neither the
energy flux nor the mmass tlux is singularly equal to zero: what vanishes is
rather two linear combinations of them, as expressed in terms of J(') and
J;_' . This clearly shows why the principle of stationary states could have not
been applied to the dynamical equations in the form given by equations (4) .

System (9) contains once again only four unknowns so that it can be solved to

obtain the following relations:
1 = 0(s) V9
VT = w,(s) V¢ (13)

veg = w4(s) vé
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The first equation is of foremost interest for the present analysis. It yields
the steady state "electrical conductivity' of the non-uniform medium subject
to the conditions of a given distribution of electrical potential on its boundaries.
In the preceeding case an encrgy exchange between the medium and its sur-
roundings was necessary to maintain, in the stationary case, the induced
clectric field, Now an exchange of electric charges between the medium and
its surroundings is necessary, its amount being determined by eq. (13)
evaluated along the boundaries of the region, Once again, complete quanti-
tative solution of the problem calls for the solution of the mass and energy
conservation equations to determine the actual distribution of the state para-
meters throughout the system considered,.

This is the type of information which can be obt ained from the present
analysis. The remainder of the body of the chapter is devoted to obtaining

explicit expressions for the coefficients o (s) and 0 (s).

2 - Determination of the cocefficient a .

From the last section it follows that to determine a one must consider
the stationary state for which a given nonuniform temperature distribution
is kept constant on the boundaries of a system and the mass fluxes J;, and
J, vanish throughout.

It here proves convenient to adopt the following form of the dynamical

cquations:
2 =
i=1 Y Jo =)
.. e
4 >
To =g Mo (Age- Ay v Q5 Ay )

k= |
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where the affinities Ai are now defined as:

= l
Au_-_'f—VT

Ay = - ¢ v¢-'rV(J§rL)
(15)
A‘\l = - QJ V¢’-TV(_}‘&5_)
Ay ® - TV (3
T
and where the quantities Qi( i= 1,2) are the heats of transfer (Ref, 19)
defined in terms of the coefficients Lij appearing in e¢q, (4), as:
Lio Lo - Ly: Lyo
==y
Ly Ly, - Ly,
(10)

Lll L,y - I‘IO l‘.!l

O S o

Ly Lo - Ly,

Expressing the gradients ol‘pi in terms of the independent gradients
VT, v,V and proceeding as indicated in the last section it can be shown

that the coefficient ¢ has the following expression:

S (bz/".: = ag /*—'l) +oqp (ay/¢ - bn/t‘l)

a z - R——— e i
a; + by b, a (17
¢ &y S Tl
1 € e €1
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with:

ag = oy -k, )/ 0a

b, = d(pi-p,)/i)cz

(18)
™, = Vi -V
g = %(Qi-h1 + hy)

where v; and hy are the specific volume and enthalpy of the j-th
constituent, respectively,

It appears that the ni’bi' %i are completely determined once  the
pertinent ''state cquations’ (Ref.23) of the constituents are given, The
gquantities ¢; depend, in addition, upon the phenomenological coefficients
Lij through the heats of transfer Q; .

Thus, to make any use of eq. (17) one must make some assumptions as
to the state equations of the plasma constituents and must determine, either
experimentally or by means of statistical mechanics, the phenomenological
coefficients LU o

The expressions for a;, bi and mi are herein derived on the assumption
that the plasma constituents are per fect gases. The quantities gqj will be

dealt with in the next paragraph,
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If one makes the perfect gas assumption, the following relations hold

(ref.23).

L oy B
P-l - [‘l_‘ll- RT ¢1 (T) +In (])Li rni>‘!
4 Ty RT
L 5 B
T
hi = hio + f Cpi dT
Iy

wherein (bi (T) is an arbitrary function of the temperature, m; is the

molar mass of the ith component, m is the molar mass of the ith com-

ponent, m is the molar mass of the mixture, h, a reference specific

o
enthalpy, and R the mwolar gas constant,

With these expressions one has:

1
_m[ L L /m _m), L L /m m
T Lglm, m; \m, m, amy o omy \my my, /|
d
J

. i [ I /m m 1 m m
iy 0y, WP S e e e e b
5 ].m,. m, c;m,; my \m, ml_J
b, = RT

al, T m,  m
00 S =
pm ¢ Cy

~ RT m, m,
n]z = -
pm \ Cy C}

Ky
3
3|~
N
Bl
e
i
»‘3 -
3
-1ER
‘I
3
NS
L——V

(19)
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In the case of an imperfect lorentz's gas (i.e.mi /m3<t ; NI/N <<|;
3

N?./N3<<l ) these formulas are greatly simplified and one obtains:

a, RTN m
— - P
€ <) m,
b, = a, =40
(21
b, RTN m
—_— - —
¢ € m,

&
i . .
where €= = are the electric charges per unit volume,
miing
The explicit expression for the coefficients a, is found by substitutiing
cqs. (20) into eq. (17},

In the case of imperfect Lorentz's gas one obtains:

Yy q;
m

da & = Nm 2% SSL - (22)
€) + €

(Z“ll(l (llnlcl

The formulae so far developed are all that one can do without specifying
the nature of the phenomienolopical coefficients }"ij' Any order of magnitude
analysis can be furthered only after having obtained suitable expressions for

these coefficients or, what amounts to the same, for the quantities gj.
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This is considered in the next part, where it will be shown how the

Lij's can all be expressed in terms of transport coefficients.

3. Expressions of the pertinent phenomenological coefficients in
terms of transport coefficients

To express the coefficients L‘ij in terms of transport coefficients the
following consideration is essential,

In the subject case we have two independent mass fluxes and one energy
flux. The number of independent phenomenological coefficients is therefore
six, accounting for the three Onsager reciprocity relations. It follows that
the behavior of the system is completely characterized by only six indepen-
dent coefficients, One such a set is that of the rAhrcc binary diffusion co-
efficients D,,, D4y, Dy (i.e., coefficients of diffusion of electron-ion,
electro-molecule and ion-molecule mixtures) plus the two thermal diffusion
coefficients D',‘ . 1)5 (i.e. the coefficients of thermal transport due to dif-
fusion of the electron gas and the ion gas into the neutral-ion and neutral-
clectron gas, respectively) and the heat conduction cocfficient,

It is then natural to think that a suitable linear transformation of fluxes

and forces will make it possible to express everything in terms of the above

transport cocfficients,
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This is considered in the next part, where it will be shown how the

Lij's can all be expressed in terms of transport coefficients,

3, Expressions of the pertinent phenomenological coefficients in
terms of transport coefficients

T6 express the coefficients L'ij in terms of transport coefficients the
following consideration is essential,

In the subject case we have two independent mass fluxes and one energy
flux. The number of independent phenomenological coefficients is therefore
six, accounting for the three Onsager reciprocity relations. It follows that
the behavior of the system is completely characterized by only six indepen-
dent coefficients, Omne such a set is that of the tﬁrcc binary diffusion co-
efficients Dy, Dy, Dy (i.e.. coefficients of diffusion of electron-ion,
electro-molecule and ion-molecule mixtures) plus the two thermal diffusion

23

cocfficients Dil , })F

N
4

(i.e¢. the coefficients of thermal transport due to dif-
fusion of the electron gas and the ion gas into the neutral-ion and neutral-
clectron gas, respectively) and the heat conduction cocfficient,

It is then natural to think that a suitable linear transformation of fluxes
and forces will make it possible to express ¢verything in terms of the above

transport coefficients.
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This is indeed so., In fact, by defining new generalized forces A;' as:

1
Ars A + by Ay (i=1,2, 3)
(23)
1S
B K By
we find, according to eqs. (23), the following expressions for the new
fluxes:
1"
Ji .y
3 {h = 1y 2p 3)
1
Jo = & ‘>_ h J,
T
and the new phenomenological coefficients L;‘,:
" . .
Vi = 1 vd= 2, 3
L Ligs (i, )
(U
s~ Yy
(24)

LA

Ige = - lay (“1 ~hy) = Ly, (hy -hy) + Lo

Lo = = Ly (hy -hy) - Iy, (hy -hy) + Ly
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These new coefficients L.i',' are just those used in reference (1) and it is
therein shown how they are related to the binary diffusion coefficients Dij'
to the thermal diffusion coefficients I)’.lr (i= t,2) and to the thermal con-
ductivity coefficient \ . |

The ultimate goal of expressing the qi's in terms of transport coefficients

is thus achieved by performing the necessary substitutions, One gets:

1 1" " " 1t I
e ! (Lyo + Lpo) Ly tLyg Ly
ql—-—'_r ——— e i e e e S e e ey g
T 1 1] " T [
(L Lys 4 Ly Lyt Lys L)
(29)
'i‘, 1" " " 1t T
(1, ¢ _ —!- (Lq + Lz ) Lll ‘{ 1_42 l“l‘
2 R A Lt

" 1" " t ' 1"t
L (Lys Lyg # Lyy Lgy ¢ Lya Loy

and by using the expressions for Lij reported in Ref.(1):

q = - L J[I)ll t Dfl nin;n, mm, [:n3 m$ Dy, D;, - m, (p-n;m;)

=
AT
Dy, Dy = my (p=npmy) Dy, DIZ\ + LD1] n® n, nym, m;y
(26)
[nlml& Dy, Dy - my (p-nymy) Day Dyy -

S
-

|
~m, (p - n, my) Dy Dl.:-l,
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and:
l r a0 r 2
q-,- = - -\—T Ll)l + D;r] [ns l’n, I)I5D35 = n\z (p -nz mz) Dll I)z, =
4

1.2
-my (p-nymy ) Dy Dyl n®nynymym, + [D;r]
-
g 2
n nngny my (n, m; Dlz D:; - my (p -y m,) DI;ng -

- nll (p - nl n\’) l)15 Dll]

where:
-l
- L

.
. »
A= Ip"p (ny Dy + 0y Dyt 0y Dy,)| Ju ny Ny my [nz m}_2 Dy, Dsy -
¢ -
[

-

: 2
-my (p - nymy) Dy Dy =y {p -ny my) D“D“-_j nonn, mym,

A
Ln,mf Dy Dy -my {p - npmy) Dy, Dy = my {p - nypmy) Dy, D,,:I +

t 1f ny nymy m,[l,_: m; Dy, Dy - my(p - nymy) DyyDyy -

T
il >
= my(p - nypmy ) Dy D“] n"n, nym, my {mmy Dy, Dy -
g L

-my{p - nymy) Dy Dy - my (p - mymy ) Dy Dyl 4
-

+n® npn, mym,; * Lns mf DyyDyy - my {p - np my) Dy, Dy =

L e : 2
-my {p - nymy) Dyy Dyp| 07 np nym, my |1y 1y Dya Dyy -
=

-vm_} (p -n;rns) Dl‘ Dz3 -m)_(p -112 In)‘) Dll Dz;]:‘r N (&8)

]
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4. - Determination of the electric conductivity of a plasma

As shown in the preceeding parts the determination of the coefficient a
in terms of thetransport coefficients of the mixture involves essentially two
steps, First the dynaniical equations are written in the form which is appro-
priate for the subsequent application of the principle of stationary state which

1

yields the expression of a in terms of some sct of kinetic coefficients Ljj
and some thermodynamics derivatives, To express the latter ones some
assumptions must be made as to the nature of the state equations of the con-
stituent gasses (in particular, the perfect gas hypothesis has been made).

In the second step, suitable linear transtormations are introduced which

"

related the kinetic coefficients l"ii to a new set of coefficients Ly

j which, as
shown in Ref, (1), is directly expressible in terms of the transport coefficients.

This same procedure must be followed to determine the electrical conduc-
tivity 0, and can be reported now in a condensed form, by skipping all
details,

The appropriate form of the dynamic equations is that given in eqs. (7).

By definition, the electric econductivity given by the ratio I/v o between the
electric current density and the electric tield,

This ratio depends on the particular assumptions about the order of the
stationary state in which it is evaluated and thus to a certain extent on the
number of ""constraints' which are imposed at the boundary of the system,

It acquires a definite meaning, that is, it can be given a unique ¢xpression

in terms of the state parameters, only in a particular first order stationary

state,
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Indeed, in the subject case of a ternary plasma, one could define a
third ordcx'-\;tationary state in which a given non-uniform electric potential
distribution and a uniform temperature and clectron concentrations are
maintained on the boundaries of the system. In such a state, however, the
plasina would certainly not be uniform throughout the region (i.e, VT and V¢
would not be identically zero) and the ratio between I and ¥4 would also be
a function of the other gradients (and/or fluxes) present in the systen,
Similar considerations hold for a second order stationary state in which a given
non-uniform electric potential distribution and a uniform temperature (or
clectron concentration) are maintained on the boundary of the system,

Once again, the gradient of T (or of ¢;) would not vanish identically
throughout the system, two independent fluxes would be different from zero
and no unique definition for the electric conductivity could be given (i,e¢. the
ratio 1/ v ¢ would not depend only on the state of the system but also on some
gradients of the state parameters),

Thus the electric conductivity must be detined in a first order stationary
state for which a given non unitorm distribution of clectric potentive is
maintained on the boundaries of the system, In this case the electric current
will be the only non-vanishing flux and equations (7) can be solved for the
ratio 0 = (I/Ve) giving:

©=candt,

=L, +~— — e —————— (29)

Lis Ly =mi2

' ' 1 1 12 ' 02
0 é l‘lo Ly L - Log Lgy - Ly Le;
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It is of interest to notice that in a fully ionized neutral plasma (i.c. in a
system with one less degree of freedom) in which the clectron concentration
gradient v, is no longer an independent gradient, the expression for ¢ in

the first order stationary state becomes by formally putting L.. = 0 in £q.(7):
y y yp g 1j q

' Lo,
J=L,, - = (30)
LOO

This relation, when expressed in terms of the only binary diffusion coeffic-
lent existing in this case, reduces, as it is easy to verify, to the well
known Einstein-type relation,

To obtain U interms ol the set of transport coefficients, onc only
needs a set of relations between the L{J and the Lll 's, which, as said
before, are related to the transport coefficients as shown in Ref, (1) The

subject relationships are:

] 1"
Loo l‘o >

i}

' = " =
Ligi = by L+ by LY,

L('): = e Loy + # Lp
(30

1 » - -

= & " - :
l¢“ = bl 14“ # i‘)l bz L‘l.: t b l‘.!'

" Tl 18] 2 "
2 E byt le e Ly, 40k Ly,

= T o = -
Loy = epby Ly 4 (e Byt ooy by ) Lptoep by Ly,

with:

Iy Iy € <0Hl 3#;)
by == m e = — [ o

Jd 1 ()Cl e, Ok,: agz
b, = OBz _ Bpy e O, gy
2 a('l 2) (.l (.‘Z () C2 - BCZ

where all the symbols have the already defined meaning,
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SECTION 2

2. l.- The transport coefficients for a plasina.

In the preceeding section the general expressions for the coefficients
. i LTl
a and 0 interms of the transport coefficients D) ,, D)3, D30 Dy Dy
have been derived,

The next step toward the ultimate goal of expressing a and 0, to
within a given degree of approximation, in terms of the thermodynamic
Parameters of the mixture and of the physical charateristics of the con-
stituent gases requires then the evaluation of the above mentioned transport
coefficients in terms of these paramieters.

This will be done in this section,

We recall some basic facts on the determination of the transport co-
efficients,

For conditions not too far from equilibrium the determination of the
transport coefficients hinges on the evaluation of the following integrals
(sce Refs. 1 or 6 details):

1} The deflection angle:

(e 8} d ¥/ ¥

* /3
e : _ ‘ 2
X.(h Wby = -2 b J* ([ -ngr., _{'_(ﬁr‘) e (32)
Tm L <
o g
where:
* . # KT 2
Marfos Web/un el Tao—; M =lmydis
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and where: My is the reduced mass, defined as my;= mimy{'ni+mj where my

and m; are the masses of the particules of species i and j; g is the initial

relative velocity of the two particles; b is the impact parameter; r the

distance between the mass centers of the two colliding particles; ¢ (r) is the

interaction potential; r  the distance of closest approach.

Eq.(32) is valid for clastic collisions between particles agsumed to be

centers of force fields with spherical symmetry.

The potentials which we shall deal with are all expressible as:

& (r) = (f(-:—;)

where € and 0 depend on the particular "molecular model' assumed, In

particular, U corresponds to the molecular diameter in the case of the

rigid sphere model.

. . . . e
2) The non-dimensional collision cross svctioh Q (g"):

o , d
RESE ) o
e Q@7 2 et 0t !
ale) L ir(-i)¢ .
r. s, 2 ‘*‘C 1 Vo

where the subscripts r,s. indicate values for the rigid sphere model.

It is:
fy e 1
| -1
Q(:)‘5 ='l__l_ + (-1 Lt
t i ¢ i +e 4

with 0 defined as betore,



3) The non dimensional collision integrals:

- a0
i 7 3 ] (es)
sz((.b)*__. 2 2 C-B*/T L"*.‘..s+) Q(e)*d *_ 0
5 L L —XTs)
(s+1)? i i T
3
where:
Jesh J (KT s+t | (o) '
res. 2nm, . 2 B

1)

Notice that, by definiton, all starred quantities are equal to one for the
rigid sphere model,
Any transport coefficient is expressible in terms of the above quantities.
Indeed, indicating by the subscripts i,j, quantities related to collisions
between particles of the ith and jth species one has:
a) Dij - (diffusion coefticient for the ith and jth species in a multi-
component gas nrixture) is related to the binaty diffusion coeffici-
ents Dij of each pair of species (see ¢q. 8-2,49, in Ref, (1)),
These relations involve in addition, the concentrations of the
single species, and the molecular masses,

The coelficient Dij' in turn, is expressible as:

/ T s
b, = 31 Vmmyj 'T) . (33)
8 P 2 U)x%
nOij (s

wh(‘rc:
. A .
0, = = (0;+05)

is the collision diameter,
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b) The coefficients of thermal diffusion, Dir, can be evaluated in terms

of the coefficients of binary molecular diffusion and of the coefficients
of thermal conductivity for each spccivs()\i) and for each pair of species

( )\-1) ) . The pertinent explicit expressions are too cumbersome to be

reported here; they can be found in Ref.( 1) page 543,

It is important, however, to notice that they involve the integrals

2 )* (ospe
S.ZiJ and “i_] s (s =1, 2,3).

£) The coefficients of thermal conductivity for the ith species can be

evaluated as:

25 /T my KT ‘_i _K__ (34)

\ =z
. e — -
13 n gy 3.“2” 2 m;

This expression is valid for monatomic gases; Eucken's corrections are to be

added for polyatomic gases,
The coefficient of thermal conductivity for a binary mixture is given by:

25 P Dy;

Noe o= D W (35)

Y 8 \IJ T

¢
where Aij is a combination of the collision integrals "2‘1) . Its value is very

close to one,

Table I summarizes the fundamental dependence of the discussed trans-

port coefficients for multicomponent gascous mixtures {first column) on the

related binary transport coefficients (column two) and on the related collision

integrals (column three).

The next step is a discussion of the actual evaluation of the transport
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coelficients for the particular potentials related to the interactions between
the particles present in a plasma.

a) Interaction electron-ions

The force between two charged particles is coulombian.
The interaction potential is given by the equation:

) e
Z.¢) € e,

$(r)=x - —— = - = (30)
r

r

where Z indicates the number of electric charges carried by the ion and
the sign ''-'"" takes into account the attractive nature of the force for dis-
tances greater than the threshoid of actions of quantic type, for which lire
force is repulsive,

With the potential given by ¢q. (36} one faces the well known fact that
the collision cross section, as (l(‘-fmc(l by ¢q. (32) assumes an infinite
value.

This problem has been studied extensively, and the ditficulty eliminated
by a "cut off" of the upper limit of the inl(.-qr:ll. The cut off distance must be

-1/3

the smaller of the mean distance between the gas particles D=n and the

Debye shielding length:
Y

epe 2z
ZD = (}\1/41:11101 )
Consider at first, as pertinent, the collisions for which the impact

distance b is less than D,

One evaluates eq. (32) wherein the upper limit becomes b= D.

1

> M ,8 its mean value 2kT and

Substituting for the expression
neglecting the small variations of the kinetic energy of the particles within

the sphere of radius D, one obtains:
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2P E2INE N2
9 &
Q(l) (g) = .;l_ (%—:{% tn l‘l + K "o (37)

where, for mixture of electrons-ions it is:

- =}
D= [n, + n, /) (38)

-

The corresponding binary diffusion coefficient is obtained by sub-

stituting eq.(37) into eq. (33) which results in:

.
; f f 2
/mg, KTV 72k 11 [0 /2KTD\ |
S E 2 o T ‘> Melm|ies ] L 39)
J m /o arve) plf 4] \eyes /|
e ) § &k -J
In the sccond case, when the upper limit is put cqual to ]D the col-
lision cross section will be:
4
2 we
Q(l) = —-—f’——‘ n A (40)
(/, KT)
where:
£
T e
3 5
A o (k'1’
- U Ton
VoLt ™ J
The corresponding expression for D]& is readily obtained by substituting
eq.(40) into eq. (33) and is:
3 "8 fmy KT 1/47."3 N /"
S p- } \—&'hl) l", 21 ¢ ln/\} (41)
L Jl‘ (8

More recently a new method to evaluate the coefficient Dy, has been

proposed (Ref. 12) which does not use the cut off for evaluating the collision
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cross section. Such a method furnishes, with a more complicated process,
an approximation higher than that necessary for our purposes, and it is
therefore not used here.

b) Interaction of electrons-neutral molecules and ions-neutral
molecules

The interaction between charged particles (electrons or ions) and the

neutral molecules can be treated by the following procedure (Ref, 3),

The charged particle produces an electric field that induces an electric
dipole into the neutral molecule, which undergocs a separation of electric

charges. The induced electric dipole produces an external potential given

by:

where a is the polarizability of the molecule, ¢; the inducing charge, and
® the position angle referred to the axis of the dipole.

The interaction potential will then be written as:

¢
Al 42
-4 (42)

(

-

6 (r) = -

I\I
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